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Abstract. We construct new degenerate (p, q)-Euler polynomials
and find some properties and identities of these polynomials. It can
be seen that the degenerate (p, q)-Euler polynomials which is related
to Euler polynomials have various relation with other polynomials.
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1. Introduction

Before clarifying the objectives of this paper, we first introduce the

necessary basic concepts. We identify several definitions and properties and

present the goals of this paper based on them.

For any n ∈ C, the (p, q)-number [3, 11, 12] is defined by

[n]p,q =
pn − qn

p− q
.

Definition 1.1 [3], [11]. Let z be any complex numbers with |z| < 1. The

two forms of (p, q)-exponential functions are defined by

ep,q(z) =

∞∑
n=0

p(
n
2) zn

[n]p,q!
,

Ep,q(z) =

∞∑
n=0

q(
n
2) zn

[n]p,q!
.
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Definition 1.2 [11]. Let n ≥ k. (p, q)-Gauss Binomial coefficients are

defined by [
n
k

]
p,q

=
[n]p,q!

[n− k]p,q![k]p,q!
,

where [n]p,q! = [n]p,q[n− 1]p,q · · · [1]p,q.

Definition 1.3 [12]. (p, q)-Euler numbers En,p,q and polynomials En,p,q(x)

are defined by

∞∑
n=0

En,p,q
tn

[n]p,q!
=

2

ep,q(t) + 1
,

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
=

2

ep,q(t) + 1
ep,q(tx).

Consider p = 1 in Definition 1.5. Then, we note

∞∑
n=0

En,q
tn

[n]q!
=

2

eq(t) + 1
,

∞∑
n=0

En,q(x)
tn

[n]q!
=

2

eq(t) + 1
eq(tx),

where En,q is the q-Euler number and En,q(x) is the q-Euler polynomial, see

[6,8, 9].

Definition 1.4 [2], [10]. Let f : Tq,h → R be any function. Then, the

delta (q, h)-derivative of f Dq,h(f) is defined by

Dq,hf(x) :=
f(qx+ h)− f(x)

(q − 1)x+ h
.

Definition 1.5 [1]. The generalized quantum binomial (x−x0)nq,h is defined

by

(x− x0)nq,h :=

{
1, if n = 0,∏n

i=1

(
x− (qi−1x0 + [i− 1]qh)

)
, if n > 0,

where x0 ∈ R.
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The generalized quantum binomials reduces to q-binomial (x−x0)nq as h→

0 and to h-binomial (x−x0)nh when q → 1. Also, we note lim(q,h)→(1,0)(x−

x0)nq,h = (x− x0)n.

Definition 1.6 [2]. The generalized quantum exponential function expq,h(αx)

is defined as

expq,h(αx) :=

∞∑
i=0

αi(x− 0)iq,h
[i]q!

,

where α is arbitrary nonzero constant.

Based on the above concepts, many mathematicians have studied q-

special functions, q-differential equations, q-calculus, and so on, see [4-9].

The purpose of this paper is to define new type of Euler polynomials and

to find various relations related to these polynomials.

2. Some properties of degenerate (p, q)-Euler
polynomials

We introduce the following degenerate (p, q) exponential function as

ep,q,h(x : t) :=

∞∑
n=0

(x)np,q,h
tn

n!

=

∞∑
n=0

(x− 0)np,q,h
tn

n!
.

For example, substituting x = 1 in the above equation, we have

ep,q,h(1 : t) =

∞∑
n=0

(1)np,q,h
tn

n!
,

where (1)np,q,h = (1− 0)np,q,h = 1(1− h) · · · (1− [n− 1]qh).

Definition 2.1. Let |p/q| < 1 and h be a non-negative integer. Then, we
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define the degenerate (p, q)-Euler polynomials En,p,q(x : h) as

∞∑
n=0

En,p,q(x : h)
tn

[n]p,q!

=
2

ep,q,h(1 : t) + 1
ep,q,h(x : t).

For x = 0 in Definition 2.1, we have

∞∑
n=0

En,p,q(h)
tn

[n]q!
=

2

ep,q,h(1 : t) + 1
,

and we call En,p,q(h) is the degenerate (p, q)-Euler numbers. From Defini-

tion 2.1, we can see several relationships for Euler polynomials.

Setting h→ 0 in Definition 2.1, we find the (p, q)-Euler numbers En,p,q and

polynomials En,p,q(x) as

∞∑
n=0

En,p,q
tn

[n]p,q!
=

2

ep,q(t) + 1
,

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
=

2

ep,q(t) + 1
ep,q(tx).

Let h → 0, q → 1 and p = 1 in Definition 2.1. Then, we have the Euler

numbers En and polynomials En(x) as

∞∑
n=0

En
tn

n!
=

2

et + 1
,

∞∑
n=0

En(x)
tn

n!
=

2

et + 1
etx.

In addition, for p = 1 and q → 1 in Definition 2.1, we see the degen-

erate Euler numbers En(h) and polynomials En(x : h) as follows:

∞∑
n=0

En(h)
tn

n!
=

2

(1 + ht)
1
h + 1

,

∞∑
n=0

En(x : h)
tn

n!
=

2

(1 + ht)
1
h + 1

(1 + ht)
x
h ,
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where En(h) = En(0 : h).

Theorem 2.2. Let k be a non-negative integer with |p/q| < 1. Then we

have

(i)

n∑
k=0

[
n
k

]
p,q

(
1
)k
p,q,h

En−k,p,q,h(h) + En,p,q(h)

=

 2, if n = 0,

0, if n ≥ 1.

(ii)

n∑
k=0

[
n
k

]
p,q

(
1
)k
p,q,h

En−k,p,q,h(x : h) + En,p,q(x : h)

= 2
(
x
)n
p,q,h

.

Proof.

(i) To find the required result, we suppose ep,q,h(1 : t) 6= −1. Then, we

obtain

∞∑
n=0

En,p,q(h)
tn

[n]p,q!
(ep,q,h(1 : t) + 1)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(
1
)k
p,q,h

En−k,p,q,h(h) + En,p,q(h)

)
tn

[n]p,q!

= 2. (1)

Comparing the coefficients of both-sides in Equation (1), we

finish the proof of Theorem 2.2. (i).

(ii) From the generating function of the degenerate (p, q)-Euler polyno-
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mials with the same condition of (i), we have

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(
1
)k
p,q,h

En−k,p,q,h(x : h) + En,p,q(x : h)

)
tn

[n]p,q!

= 2

∞∑
n=0

(
x
)n
p,q,h

tn

[n]p,q!
. (2)

From (2), we complete the proof of Theorem 2.2. (ii).

Theorem 2.3. For |p/q| < 1, we derive

En,p,q(x : h) =

n∑
k=0

[
n
k

]
p,q

(
x
)n−k
p,q,h

Ek,p,q(h).

Proof. To find a relation between En,p,q(x : h) and En,p,q(h), we can be

transformed as

∞∑
n=0

En,p,q(x : h)
tn

[n]p,q!
=

2

ep,q,h(1 : t) + 1
ep,q,h(x : t)

=

∞∑
n=0

En,p,q(h)
tn

[n]p,q!

∞∑
n=0

(
x
)n
p,q,h

tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(
x
)n−k
p,q,h

Ek,p,q(h)

)
tn

[n]p,q!
. (3)

Using the coefficient comparison method, we find the required result.

Corollary 2.4. From Theorem 2.1, the following hold:

(i) Setting p = 1, we have

En,q(x : h) =

n∑
k=0

[
n
k

]
q

(
x
)n−k
q,h

Ek,q(h),

where

[
n
k

]
q

is the q-binomial coefficient and

(
x
)n
q,h

= x(x− h)(x− [2]qh) · · · (x− [n− 1]qh).
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(ii) Setting p = 1 and q → 1, we have

En(x : h) =

n∑
k=0

(
n

k

)(
x
)n−k
h

Ek(h),

where (
x
)n
h

= x(x− h)(x− 2h) · · · (x− (n− 1)h).

(iii) Setting p = 1 and h→ 0, we have

En,q(x) =

n∑
k=0

[
n
k

]
q

xn−kEk,q,

where

[
n
k

]
q

is the q-binomial coefficient.

Theorem 2.5. Let n, k be any non-negative integers. Then, we have

(i)

2En,p,q(x : h)

=

n∑
k=0

[
n
k

]
p,q

(Ek,p,q(1) + Ek,p,q) En−k,p,q,h(x : h),

where En,p,q is the (p, q)-Euler numbers and En,p,q(x) is the (p, q)-

Euler polynomials.

(ii)

[n]p,qEn−1,p,q(x : h)

=

n∑
k=0

[
n
k

]
p,q

(Bk,p,q(1)−Bk,p,q) En−k,p,q,h(x : h),

where Bn,p,q is the (p, q)-Bernoulli numbers and Bn,p,q(x) is the (p, q)-

Bernoulli polynomials.
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(iii)

2[n]p,qEn−1,p,q(x : h)

=

n∑
k=0

[
n
k

]
p,q

(Gk,p,q(1) +Gk,p,q) En−k,p,q,h(x : h),

where Gn,p,q is the (p, q)-Genocchi numbers and Gn,p,q(x) is the (p, q)-

Genocchi polynomials.

Proof. To find some relation of (p, q)-Euler, Bernoulli, and Genocchi poly-

nomials, we consider that:

(i) (a relation of the degenerate (p, q)-Euler polynomials and (p, q)-Euler

polynomials)

∞∑
n=0

En,p,q(x : h)
tn

[n]p,q!

=

(
1

ep,q(t) + 1
ep,q(t) +

1

ep,q(t) + 1

)
2

eq,h(1 : t) + 1
eq,h(x : t)

=
1

2

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(Ek,p,q(1) + Ek,p,q) En−k,p,q,h(x : h)

)
tn

[n]p,q!
. (4)

(ii) (a relation of the degenerate (p, q)-Euler polynomials and (p, q)-

Bernoulli polynomials)

∞∑
n=0

En,p,q(x : h)
tn

[n]p,q!

=

(
1

ep,q(t)− 1
ep,q(t)− 1

ep,q(t)− 1

)
2

eq,h(1 : t) + 1
eq,h(x : t)

=
1

t

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(Bk,p,q(1)−Bk,p,q) En−k,p,q,h(x : h)

)
tn

[n]p,q!
. (5)
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(iii) (a relation of the degenerate (p, q)-Euler polynomials and (p, q)-

Genocchi polynomials)

∞∑
n=0

En,p,q(x : h)
tn

[n]p,q!

=

(
1

ep,q(t) + 1
ep,q(t) +

1

ep,q(t) + 1

)
2

eq,h(1 : t) + 1
eq,h(x : t)

=
1

2t

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(Gk,p,q(1) +Gk,p,q) En−k,p,q,h(x : h)

)
tn

[n]p,q!
. (6)

From (4), (5), and (6), we get the result.

Corollary 2.6. Setting p = 1 in Theorem 2.5, we have

(i)

2En,q(x : h)

=

n∑
k=0

[
n
k

]
q

(Ek,q(1) + Ek,q) En−k,q,h(x : h),

where En,q is the q-Euler numbers and En,q(x) is the q-Euler polyno-

mials.

(ii)

[n]qEn−1,q(x : h)

=

n∑
k=0

[
n
k

]
q

(Bk,q(1)−Bk,q) En−k,q,h(x : h),

where Bn,q is the q-Bernoulli numbers and Bn,q(x) is the q-Bernoulli

polynomials.

(iii)

2[n]qEn−1,q(x : h)

=

n∑
k=0

[
n
k

]
q

(Gk,q(1) +Gk,q) En−k,q,h(x : h),
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where Gn,q is the q-Genocchi numbers and Gn,q(x) is the q-Genocchi

polynomials.

Theorem 2.7. For |q| < 1, we have

2En,p,q(x : h)

=

n∑
k=0

[
n
k

]
p,q

[
n
k

]
q

[n− k]p−1q!p(
n−k

2 )(Ek,q(1) + Ek,q)

[n]q[n− 1]q · · · [n− k + 1]q
En−k,p,q(x : h),

where En,q(x) is the q-Euler polynomials and En,q is the q-Euler numbers.

Proof. To derive a relation of En,p,q(x : h) and Ek,q(x), we find as the

follows:

∞∑
n=0

En,p,q(x : h)
tn

[n]q!

=

(
1

eq(t) + 1
eq(t) +

1

eq(t) + 1

)
2

eq,h(1 : t) + 1
eq,h(x : t)

=
1

2

∞∑
n=0

(Ek,q(1) + Ek,q)
tn

[n]q!

∞∑
n=0

En−k,p,q,h(x : h)
tn

[n]p,q!
. (7)

Here, we obtain a relation [n]p,q! = p(
n
2)[n]p−1q!. Using this relation in

(7), we have the result of Theorem 2.7.

3. Conclusion

In this paper, we constructed the degenerate (p, q)-Euler polynomials

and found some properties of these polynomials. We also derived several

relationship between degenerate (p, q)-Euler polynomials and other polyno-

mials.
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